The product rule for derivations on finite dimensional split semi-simple Lie algebras over a field of characteristic zero
نویسنده
چکیده
In this article we consider maps π : R → R on a non-associative ring R which satisfy the product rule π(ab) = (πa)b + aπb for arbitrary a, b ∈ R, calling such a map a production on R. After some general preliminaries, we restrict ourselves to the case where R is the underlying Lie ring of a finite dimensional split semi-simple Lie algebra over a field F of characteristic zero. In this case we show that if π is a production on R, then π necessarily satisfies the sum rule π(a + b) = πa + πb, that is, we show that the product rule implies the sum rule, making π a derivation on the underlying Lie ring of R. We further show that there exist unique derivations on the field F, one for each simple factor of R, such that appropriate product rules are satisfied for the Killing form of two elements of R, and for the scalar product of an element of F with an element of R.
منابع مشابه
On dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملInner Derivations of Non-associative Algebras
In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras, and for associative algebras with no absolute right (left) divisor of zero. I t is well known that all derivations of semi-simple associative or Lie algebras over a field of characteristic zero are inner. Recent correspondence with N. Jacobson has ...
متن کاملCharacteristic Ideals and the Structure of Lie Algebras
The purpose of this note is to study the radical and such concepts as semi-simplicity and simplicity for Lie algebras in terms of characteristic ideals. The program follows the outlines of part of a fundamental paper of Fitting on finite groups, and the final result displaying an isomorphism of an algebra 8 with no solvable characteristic ideals into the Lie algebra of derivations of a uniquely...
متن کاملDouble derivations of n-Lie algebras
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کامل